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Abstract Bayesian model selection between two of the more commonly used circu-
lar models, namely the von Mises distribution and the Wrapped Symmetric U-Stable
distribution is considered here. Our approach is based on posterior model proba-
bilities and the corresponding posterior model odds, which are functions of Bayes
factors. Marginal likelihoods under the two models are estimated based on prior
distributions for the parameters that occur in these two competing models. The pro-
posed methodology is analyzed and assessed through an extensive simulation study
and shown to perform very well.

1 Introduction

Directional data, i.e. observations on directions, arise quite frequently in many
scientific fields. For example, a biologist may be measuring the direction of flight
of a bird, or a geologist may be dealing with data on paleocurrent analysis of a
river flow. Several concrete examples are presented in detail in books such as Fisher
(1995), Mardia and Jupp (2000), Jammalamadaka and SenGupta (2001) etc. Two-
dimensional directions can also be represented as angles or simply as points on
the circumference of the unit circle and therefore such observations are also called
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circular data. See for instance the books cited earlier which discuss various statistical
methods for analyzing circular data.

In many applications it is reasonable to assume that the circular data of interest is
symmetrically distributed and therefore probability distributions having symmetric
densities are generally more appropriate. Most prominent among these is the von
Mises (vM) distribution, also called the Circular Normal distribution because of
its many similarities to the Normal distribution on the real line. This is often the
usual first choice for modeling typical unimodal symmetric circular data. Among
several alternatives to this, is the Wrapped Normal distribution which is obtained by
wrapping a Normal/Gaussian distribution on the real line, around the circle. Such
a Wrapped Normal distribution is a member of the symmetric Wrapped U-Stable
(WSUS) class of circular distributions (see e.g. Gatto and Jammalamadaka, 2003)
that are constructed by wrapping the symmetric U-stable family of distributions
around the circle.

The vM distribution has been extensively studied from a frequentist perspective,
see for example Chapters 3-5 of Jammalamadaka and SenGupta (2001), major parts
of which cover the sampling distribution theory and inference for this distribution.
However, the Bayesian literature on the vM is far less extensive. Buckle (1995)
performed Bayesian computation via Markov chain Monte Carlo in order to sam-
ple from the posterior distribution of the parameters of a stable distribution, while
Hans (2007) introduced an approach for Bayesian inference in the setting of stable
distributions that applies a fast Fourier transformation of the characteristic function
in order to approximate the likelihood function. Ravindran and Ghosh (2011) pro-
posed a data augmentation method using slice sampling to sample from the posterior
distribution of the parameters of a wrapped stable distribution. The paper by Jam-
malamadaka et al (1987) is concerned with Bayes predictive inferences in regression
models when the error terms are spherically distributed, while the paper by Chib,
Tiwari and Jammalamadaka (1988) deals with the Bayes prediction problem for
linear regression models with elliptical errors. Guttorp and Lockhart (1988) studied
the problem of determining the location of an emergency transmitter in a downed
aircraft, by developing conjugate prior distributions for the vM distribution, which
they use to compute the posterior distribution of the location. George and Ghosh
(2006) presented a Bayesian approach to regress a circular variable on a linear pre-
dictor, assuming that the regression coefficients have a nonparametric distribution
with a Dirichlet process prior. Camli et al (2022) consider Bayesian lasso, which is
a commonly used variable selection procedure in linear regression models, in the
context of circular regression.

It is well known that the vM distribution can be reasonably well approximated
by a wrapped normal distribution by equating their respective first-order trigono-
metric moments, equivalent to equating the magnitudes and directions of their mean
resultant vectors (see Section 2.2.6 of Jammalamadaka and SenGupta (2001)). The
WSUS class, itself a sub-family of the even wider and flexible wrapped U-stable fam-
ily, which includes the Wrapped Normal and Wrapped Cauchy distributions besides
others, as special cases.
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In this study we consider Bayesian model selection between the vM and the
WSUS distributions. Our approach is based on posterior model probabilities and
the corresponding posterior model odds, starting with prior distributions on the
parameters of the two competing models and by estimating the marginal likelihoods.
The prior and posterior odds so obtained, allow us to calculate the Bayes factor
for our model selection problem. The proposed methodology is verified through
extensive simulation studies.

This chapter is organized as follows. Section 2 provides an overview of the
two models for circular data under consideration, the vM and the WSUS. Section
3 introduces the Bayesian circular model selection problem: the Bayes factor is
explained in Section 3.1, prior distributions are discussed in Section 3.2, marginal
likelihoods and numerical algorithms for obtaining them are discussed in Section
3.3. Section 4 provides the results of the simulation study, with concluding remarks
in Section 5.

2 Two central models for circular data

This section briefly reviews the two alternative model choices that we plan to con-
sider: the vM is considered in Section 2.1, followed by the WSUS which is discussed
in Section 2.2.

2.1 The von Mises distribution

A circular random variable \ is said to have the von Mises (vM) or Circular Normal
distribution if it has a probability density function given by

5 (\ |`, ^) = 1
2c�0 (^)

e^ cos(\−`) , ∀\ ∈ [0, 2c), (1)

where 0 ≤ ` < 2c is a measure of location which is also the mean direction, while
^ ≥ 0 is a measure of concentration toward `. Here

�a (I) = (2c)−1
∫ 2c

0
cos(a\) exp{I cos \}3\,∀I ∈ C

, is the modified Bessel function of order a, with<a > −1/2; cf. 9.6.18 at p. 376 of
Abramowitz and Stegun (1972). In particular, �0 (^) = (2c)−1

∫ 2c
0 exp{^ cos \}3\

and �1 (^) = (2c)−1
∫ 2c

0 cos \ exp{^ cos \}3\, ∀^ ≥ 0. Detailed presentations of this
central circular distribution can be found for instance in Section 2.2.4 of Jammala-
madaka and SenGupta (2001) or in Section 3.5.4 of Mardia and Jupp (2000). The
length of the first trigonometric moment can be used as a measure of concentration
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toward ` and it is given by

d = d(^) = | |�(^)ei` | | = �(^),

where �(^) = �1 (^)/�0 (^) is a (strictly) increasing function in ^. The value of d lies
in [0, 1): the closer it is to 1, the higher the concentration toward the mean direction.

2.2 Wrapped Symmetric "-Stable distribution

Any linear random variable - on the real line can be transformed to a circular ran-
dom variable \ by wrapping it around a circle of unit radius i.e. reducing it modulo
2c, viz. with \ = - mod 2c. Using this idea, many wrapped circular distributions
have been constructed. The trigonometric moment of order ? for a wrapped circular
distribution corresponds to the value of the characteristic function of the unwrapped
randomvariable at the integer value ? (see e.g. Proposition 2.1 of Jammalamadaka an
SenGupta(2001). The U-stable distributions are considered as important generaliza-
tions of the Wrapped Normal distribution, having the property whose location-scale
families are closed under convolution. They are described by the four parameters
U, V, ` and g: the parameter U ∈ (0, 2] defines the fatness of the tails (Gaussian
tails for U = 2 and heavy tails with infinite variance for any smaller U), the param-
eter V ∈ [−1, 1] governs skewness (V = 0 corresponds to the symmetric case), the
parameter ` ∈ R is a location and the parameter g > 0 is a scale parameter.

The WSUS class of circular distributions are constructed by using the character-
istic function of the U-stable distribution with V = 0 which is given by

i({) = e−g
U |{ |U+i`{ , ∀{ ∈ R.

Then, the probability density function of a WSUS random variable \ taking values
in [0, 2c) is given by

5 (\ |`, U, d) = 1
2c
+ 1
c

∞∑
:=1

d:
U

cos(: [\ − `]), ∀\ ∈ [0, 2c), (2)

where 0 ≤ ` < 2c is a measure of location on the circle (the mean direction),
d = e−gU ∈ (0, 1] is a measure of concentration towards ` (the closer it is to 1 the
more the concentration towards the mean) and U ∈ (0, 2] is a shape parameter. For
U = 2 we get the Wrapped Normal density, while for U = 1 we have the Wrapped
Cauchy density, which has the simple form

5 (\ |`, 1, d) = 1
2c

1 − d2

1 + d2 − 2d cos(\ − `)
, ∀\ ∈ [0, 2c), (3)

where d = e−g . In this article we consider the value of U as known. We will however
not consider the value U = 2 or other values of U that are very close to 2, because
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in this case the WSUS distribution can be very close to the vM (cf. e.g. p. 45 of
Jammalamadaka and SenGupta, 2001) and our test would not be able to distinguish
these two models.

3 Bayesian circular model selection

After a brief overview on the Bayes factor in Section 3.1, prior distributions are
discussed in Section 3.2 andmarginal likelihoods and relatedMonteCarlo algorithms
are given in Section 3.3.

3.1 Determination of the Bayes factor

Let us denote by ) = (\1, . . . , \=) a sample of = independent circular random
variables, all of them generated from one of the two following candidate models,

"1 : vM(`, ^) or "2 : WSUS(`, U, d).

Let " ∈ {"1, "2}. Within the Bayesian framework, the identification of the best
model between the above two competitors is equivalent to finding the model with
the highest posterior model probability, defined as

?(" |)) = 5 () |")?(")
5 () |"1)?("1) + 5 () |"2)?("2)

, (4)

where 5 () |") is the marginal likelihood of model " with sample ) and ?(") is
the prior model probability of model " . The marginal likelihood function (4) can
be further expanded to include the effect of the model parameters as follows,

5 () |") =
∫

5 () |7" , ") 5 (7" |")37" , (5)

where 5 () |7" , ") is the likelihood under model " with parameters 7" and
5 (7" |") is the prior distribution of model parameters, given the model " .

Closed form expression of the marginal likelihoods (5) and therefore of the
posteriormodel probabilities (4) is available only in special cases; several approaches
exist to compute the marginal likelihood; for a nice review, the reader is referred to
Friel and Wyse (2012).

In the setting of Bayesian hypothesis testing, the Bayes factor � is an indicator
of the support of the sample for the null hypothesis H0 against some alternative
hypothesis H1. It is precisely the ratio of the posterior odds over the prior odds, of
H0 versus H1, which is symbolically given by
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� =
% [H0 |sample]
% [H1 |sample]

% [H1]
% [H0]

.

This can obviously be re-expressed as

� =
% [sample|H0]
% [sample|H1]

.

When � is larger than 1, the sample supports H0, and when � is smaller than 1, the
sample supports H1. In our setting of model selection, the two hypotheses H0 and
H1 are replaced by the models "1 and "2 respectively. Thus the Bayes factor for
model selection problem becomes

� =
?("1 |))
?("2 |))

?("2)
?("1)

=
5 () |"1)
5 () |"2)

. (6)

Table 1 provides some heuristic or practical guidelines for interpreting values of
Bayes factors. They are due to Jeffreys (1939) and Kass and Raftery (1995). We refer
to these references for details on these interpretations. Essentially, a Bayes factor
slightly greater than 1 provides significant support for H0. Other aspects such as
sample size may also be taken into account when interpreting the magnitude of a
Bayes factor.

H evidence for H0 versus H1
< 1 negative

1 to 1.5 significant
1.5 to 5 positive
5 to 10 substantial
10 to 20 strong
> 20 decisive

Table 1 Practical interpretation of the values taken by the Bayes factor �

3.2 Choice of Prior distributions

We use the same priors for parameters that are common to both models "1 and
"2. Let " ∈ {"1, "2}. The beta prior is used for the concentration parameter d of
model " , i.e. d |" ∼ Beta(0, 1), where 0, 1 > 0, with density

5 (d |") = 1
B(0, 1) d

0−1 (1 − d)1−1, ∀d ∈ [0, 1]

where B(0, 1) =
∫ 1

0 G0−1 (1 − G)1−13G. The beta distribution is a commonly used
prior because it provides densities with various shapes, that include the flat viz.



Bayesian model selection between vM and WSUS 7

uniform density, and because it is the conjugate prior to binomial and negative
binomial likelihoods. In our setting, although the beta prior yields neither conjugate
classes nor analytical solutions to integrals, it represents a simple and flexible choice
of prior for the concentration. Given the reparametrization ^ = �−1 (d) needed in
"1, namely the vM distribution, we obtain the prior density for the concentration
parameter ^ as

5 (^ |"1) =
1

B(0, 1) �
0−1 (^)

{
1 − �(^)

}1−1 3

3^
�(^)

=
1

B(0, 1) �
0−1 (^)

{
1 − �(^)

}1−1
(
1 − �(^)

^
− �2 (^)

)
, ∀^ ≥ 0. (7)

We use a uniform or isotropic prior for the mean direction ` in " , i.e.

5 (` |") = 1
2c
, ∀` ∈ [0, 2c).

3.3 Marginal likelihoods

Analytical forms of vM andWSUS marginal likelihood are provided in Section 3.3.1
and Monte Carlo numerical algorithms for obtaining Bayes factors of our model
selection problems are presented in Section 3.3.2.

3.3.1 Analytical forms of vM and WS"S marginal likelihood

• vM marginal likelihood
Under model "1, the marginal likelihood according to (5) is given by

5 () |"1) =
∫ ∞

0

∫ 2c

0

=∏
8=1

1
2c�0 (^)

e^ cos(\8−`) 5 (^ |"1) 5 (` |"1)3`3^

= (2c)−=
∫ ∞

0

1
�=0 (^)

∫ 2c

0
e^

∑=
8=1 cos(\8−`) 5 (` |"1) 5 (^ |"1)3`3^

= (2c)−=
∫ ∞

0

1
�=0 (^)

∫ 2c

0
e^

∑=
8=1 cos(\8− \̄=) cos( \̄=−`) 5 (` |"1) 5 (^ |"1)3`3^

= (2c)−=
∫ ∞

0

�0 (^'=)
�=0 (^)

5 (^ |"1)3^, (8)

where the sample mean direction \= and the sample resultant length are defined by

=∑
8=1

cos(\8 − \=) = '= and
=∑
8=1

sin(\8 − \=) = 0.
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They are indeed direction and length of the sample resultant vector

X= =

(
=∑
8=1

cos \8 ,
=∑
8=1

sin \8

)
. / •WSUS marginal likelihood
Under model "2 the marginal likelihood is given by

5 () |"2) = (2c)−=
∫ 1

0

∫ 2c

0

=∏
8=1

(
1 + 2

∞∑
:=1

d:
U

cos(: [\8 − `])
)

1
2c

5 (d |"2)3`3d,

(9)

when U ≠ 1, and by

5 () |"2) = (2c)−=
∫ 1

0

∫ 2c

0

=∏
8=1

1 − d2

1 + d2 − 2d cos(\8 − `)
1

2c
5 (d |"2)3`3d, (10)

when U = 1; cf. (3).

3.3.2 Numerical evaluation of the marginal likelihoods and Bayes factor

Unfortunately, neither of these marginal likelihoods (8) or (9) can be analytically
obtained. Thus we must rely on numerical methods, as we do below.
• vM marginal likelihood
We can evaluate 5 () |"1) given in (8) by numerical integration. For this purpose it
would be preferable to obtain a finite integration domain, for example through the
change of variables ^ = − log_. This gives

5 () |"1)

=
1

(2c)=B(0, 1)

∫ ∞

0

�0 (^'=)
�=0 (^)

�0−1 (^)
{
1 − �(^)

}1−1
(
1 − �(^)

^
− �2 (^)

)
3^

=
1

(2c)=B(0, 1)

∫ 1

0

�0 (− log{_}'=)
�=0 (− log_) �0−1 (− log_)

{
1 − �(− log_)

}1−1

·
(
1 + �(− log_)

log_
− �2 (− log_)

)
3_

_
. (11)

One can also use Monte Carlo integration. Generating from the density (7) in
order to approximate the integral (8) appears complicated, because we have a non-
standard density over an unbounded domain. We thus re-express the vM marginal
likelihood as

5 () |"1) =
∫ 1

0

�0 (�−1 (d)'=)
{2c�0 (�−1 (d))}=

5 (d |"1)3d,
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in order to obtain the following Monte Carlo algorithm.

Algorithm MC-vM-post for the marginal likelihood under vM
For 9 = 1, . . . , B,

generate d 9 from the Beta(0, 1) distribution;

compute - 9 =
�0 (�−1 (d 9 )'=)
{2c�0 (�−1 (d 9 ))}=

.

Estimate the posterior density of model "1 by

5̂ () |"1) =
1
B

B∑
9=1

- 9 .

One other difficulty in using Algorithm vM-post is the numerical evaluation of

G = �−1 (?), (12)

where ? ∈ (0, 1). Although we can avoid evaluating �−1 in the representation (11)
proposed for numerical integration, this evaluation is required in the aboveAlgorithm
vM-post for the Monte Carlo integration. However and fortunately, solving (12) has
received considerable attention in the literature. We first note that the function
� = �1/�0 is continuous and (strictly) increasing probability distribution function
and so �−1 is a simple quantile function. It can be well approximated by

�−1 (?) =


2? + ?3 + 0.83?5, if 0 ≤ ? < 0.53,
−0.4 + 1.39? + 0.43(1 − ?)−1, if 0.53 ≤ ? < 0.85,
(?3 − 4?2 + 3?)−1, if 0.85 ≤ ? < 1.

(13)

This approximation has been successfully used for the computation of the maximum
likelihood estimator of ^ (see e.g. p. 88 of Fisher, 1995) and for obtaining the
saddlepoint approximation to the distribution of the total distance of the planar
Pearson-vM random walk (see Gatto, 2017).
•WSUS marginal likelihood
The evaluation of 5 () |"2) given in (9) can be done by numerical integration of

5 () |"2) =

1
(2c)=+1B(0, 1)

∫ 1

0
d0−1 (1 − d)1−1

∫ 2c

0

=∏
8=1

(
1 + 2

∞∑
:=1

d:
U

cos(: [\8 − `])
)
3`3d.

(14)

When U = 1, we use (3) in order to simplify (14) to
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5 () |"2) =
1

(2c)=+1B(0, 1)

·
∫ 1

0
d0−1 (1 − d)1+=−1 (1 + d)=

∫ 2c

0

{
=∏
8=1
[1 + d2 − 2d cos(\8 − `)]

}−1

3`3d.

(15)

We can also apply Monte Carlo integration: (9) and (10) give directly the follow-
ing algorithm.

Algorithm MC-WSUS-post for the marginal likelihood under WSUS
For 9 = 1, . . . , B,

generate ` 9 from Uniform(0, 2c);
generate d 9 from Beta(0, 1);
compute . 9 =

∏=
8=1

1
2c

(
1 + 2

∑∞
:=1 d

:U

9
cos(: [\8 − ` 9 ])

)
, if U ≠ 1, or

compute . 9 =
∏=
8=1

1−d2
9

2c {1+d2
9
−2d 9 cos(\8−` 9 ) }

, if U = 1.
Estimate the posterior density of model "2 by

5̂ () |"2) =
1
B

B∑
9=1
. 9 .

• Bayes factor
Computational versions of the Bayes factor follow directly from the representation
(6). It can be obtained either by numerical integration of (11) and (14) or by joining
Algorithms MC-vM-post and MC-WSUS-post as follows.

Algorithm MC-Bayes-fact for the Bayes factor of model selection
Generate -1, . . . , -B from Algorithm MC-vM-post.
Generate .1, . . . , .B from Algorithm MC-WSUS-post.
Compute the Bayes factor

�̂ =

∑B
9=1 - 9∑B
9=1. 9

.

4 A Simulation study

In this section we present a simulation study that verifies the effectiveness of the
proposed model selection procedure. For this purpose, we generate samples from
various vM distributions and compute Bayes factors based on underlying vM distri-
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butions compared to WSUS distributions, which are not the correct models. We thus
expect Bayes factors larger than one and substantially larger when the alternative
model used is a more distant or incorrect WSUS distribution.

In particular, we generate A = 1000 samples ) of sizes = = 40, 100 from vM(0, ^)
with ^ = 1, 2, 4. The Beta(0, 1) prior parameters are 0 = 1 = 2, yielding a symmetric
prior around the center 1/2. We then compute the Bayes factors �̂ by means of
Algorithm MC-Bayes-fact. The results are shown in Table 2, in which each Bayes
factor displayed is in fact the mean of the A = 1000 simulated Bayes factors. The
standard deviation of these simulations is shown in parentheses. Simulated Bayes
factors �̂ for = = 40 are in Table 2 (a) and for = = 100 in Table 2 (b).

All Bayes factors are as expected, greater than 1 and often substantially greater
than 1. We refer to Table 1 for precise interpretations of these values. We see that
there is clearly more support for the vM distribution against the WSUS distribution
(or for "1 against "2), with = = 100 than with = = 40, as expected. Also, the
Bayes factors decrease with larger values of the stability index U, which is expected
because as U approaches 2, the WSUS approaches the vM. Large values of ^ do also
lead to larger Bayes factors, because the uncertainty decreases with large ^ and the
distinction between the two models becomes more apparent. Only U = 3/2 and ^ = 1
give Bayes factor values close to 1, still providing significant evidence for H0 versus
H1, according Table 1.

(a) n = 40

"
+ 1 2 4

3/4 7.56 389.66 11465.26
(1.14) (76.24) (1399.98)

1 2.28 25.68 264.69
(0.18) (2.44) (18.78)

3/2 1.03 1.57 4.57
(0.01) (0.04) (0.14)

(b) n = 100

"
+ 1 2 4

3/4 255.12 5349795 1.24×1012

(108.94) (1907579) (1.07 × 1012)
1 8.22 5996.47 2.46 × 107

(0.97) (1329.73) (1.63 × 107)
3/2 1.06 3.54 199.94

(0.01) (0.20) (38.94)

Table 2 Simulated Bayes factors �̂ with samples ) generated from vM(0, ^) with ^ = 1, 2, 4, for
= = 40 (a) and = = 100 (b). The Beta(0, 1) prior parameters are 0 = 1 = 2. Each Bayes factor is
the mean of A = 1000 simulations, with standard deviation shown in parentheses.
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Moreover, Figure 1 provides the boxplots of the A = 1000 simulated Bayes factors
�̂ of Table 2 for the cases ^ = 1 (left figure), ^ = 2 (right figure), for U = 3/2 and for
= = 40, 100. Because boxplots with ^ = 2 appear right-skewed, Figure 2 provides
the boxplots for the same cases of Figure 1 but in logarithmic scale, i.e. for log �̂.

Fig. 1 Boxplots of A = 1000 simulated Bayes factors �̂ with samples ) generated from vM(0, ^)
with ^ = 1 (left figure), ^ = 2 (right figure) and for = = 40, 100. The Beta(0, 1) prior parameters
are 0 = 1 = 2 and the WSUS has U = 3/2.

5 Summary and Conclusions

Bayesianmodel selection between the vM and theWSUS distributions is investigated
in this chapter. Algorithms for obtaining the marginal likelihoods under the two
models are suggested. These algorithms allow us to obtain the Bayes factor for the
considered model selection problem. A simulation study confirms that the proposed
technique can be advantageously used in scientific studies of circular data. However,
we should remark here that our procedure of estimating the marginal likelihoods by
sampling from the priors is a naive Monte Carlo estimator, which may become quite
inefficient in some cases, especially when the prior distribution differs considerably
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Fig. 2 Boxplots of A = 1000 simulated logarithmic Bayes factors log �̂ with samples ) generated
from vM(0, ^) with ^ = 1 (left figure), ^ = 2 (right figure) and for = = 40, 100. The Beta(0, 1)
prior parameters are 0 = 1 = 2 and the WSUS has U = 3/2.

from the actual posterior. In such a case, the likelihood values generated from the
prior can often be zero, providing minimal contribution to the final summation. This
can result in large standard errors and slow convergence. There are more subtle and
methods for generating data from marginal likelihoods that could be explored in the
future.

Marginal likelihoods of other models may be similarly obtained and so the pro-
posed methodology can in principle be extended to other circular models. It may
also be applied in choosing between any number of models (more than two) for a
given circular data set.
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